
encia,Valencia,Spain,46022

Email:afernandez@dsic.upv.es

Abstract—Web mashups are a new generation of applica-
tions based on the composition of ready-to-use, heterogeneous
components. In different contexts, ranging from the consumer
Web to Enterprise systems, the potential of this new technology
is to make users evolve from passive receivers of applications
to actors actively involved in the creation of their artifacts,
thus accommodating the inherent variability of the users’ needs.
Current advances in mashup technologies are good candidates
to satisfy this requirement. However, some issues are still largely
unexplored. In particular, quality issues specific for this class
of applications, and the way they can guide the users in the
identification of adequate components and composition patterns,
are neglected. This paper discusses quality dimensions that can
capture the intrinsic quality of mashup components, as well as
the components’ capacity to maximize the quality and the user-
perceived value of the overall composition. It also proposes an
assisted composition process in which quality becomes the driver
for recommending to the users how to complete mashups, based
on the integration of quality assessment and recommendation
techniques within a tool for mashup development.

I. I NTRODUCTION

Mashups are new-generation Web applications that integrate

on past investments in service-oriented software architectures
and Web services, as well as on the huge amount of public
APIs available on the Web. In fact, the possibility to integrate
Web services with UIs greatly supports the development of
complete applications. Furthermore, the emergence of mashup
tools, which aim to support mashup development without
the need for programming skills, has moved the focus from

developers to end users, and from product-oriented software
development to consumer-oriented composition [1].

So far, research on Web mashups has focused on the
de“nition of composition technologies and tools, while limited
efforts have been devoted to quality concerns [2]. Research
on Web Engineering has proposed several quality models
addressing Web applications. However, as also proved by a
study that we conducted on a large collection of mashups from
the programmableWeb.com repository [3], the application of
traditional and generic models not always captures the real
value of Web mashups. Although the majority of such applica-
tions are characterized by a simple one-page structure, speci“c
concerns, related to the component-based development and to
the dynamics that characterize the mashup ecosystem, require
speci“c attention.

In this paper we discuss the quality of mashups in the light
of the activities that characterize their development process. In
this context, the quality and the role of the constituent compo-
nents become relevant ingredients for quality assessment [4],

the need for quality-based mechanisms guiding users in the se-
lection of components and composition patterns. In Section III
we illustrate the typical scenario for mashup development and
the different quality issues related to component creation and
mashup composition. Section IV introduces a set of techniques
to assess mashup quality, also illustrating how they can be used
for the generation of quality-aware recommendations assisting
mashup composition. Section V illustrates how the assessment
techniques have been integrated into the architecture of our
own mashup tool. Section VI discusses related works. Finally

2012 Eighth International Conference on the Quality of Information and Communications Technology

978-0-7695-4777-0/12 $26.00 © 2012 IEEE
DOI 10.1109/QUATIC.2012.50

10

11

13

Iteration no. Categories already in the composition Selected Association Rule Suggested Component
1 Reference Reference→ Photo Flickr
2 Reference, Photo Reference, Photo→ Social Twitter
3 Reference, Photo, Social Reference, Social→ Search Google Ajax Search

TABLE I: Selection of association rules in the construction for the Shahi sample mashup.

(a) Example of quality-based recommendations foralternative components.

(b) Example of recommendations foradditional componentsbased on the
assessment of the perceived quality and added-value dimensions.

Fig. 3: Recommendation windows in the PEUDOM visual
editor [3].

con“dence are projected over the local repository, to identify
the components falling into those categories. For example,
the recommended components shown in Figure 3b belong to
categories frequently associated with the components already
included in the composition. At this point, the quality and
added-value metrics described above are taken into account
to rank the identi“ed components based on their capacity to
improve the overall composition.

E. Recommendation procedure: an example

In order to test the effectiveness of our approach, we
performed a set of experiments in which we simulated the
creation of a number of mashups based on our assisted compo-
sition method. We selected a set of well-designed and popular
mashups, top-ranked in the programmalbleWeb repository and
we used such mashups as benchmarks. More speci“cally, we
used such mashups for the identi“cation of our goal mashups.
We wanted indeed to understand in which measure, given a
properly selected set of components including the ones in the
selected goal mashups, our mechanism would have led to the
composition of quality mashups.

In order to identify the set of benchmark mashups, we con-
sidered the popularity ranking provided by programmableWeb
and we mediated it with the judgment of “ve evaluators,
achieved in a previous study [3] through heuristic evaluation
sessions that did not take into account our quality metrics. For
each goal mashup, we simulated our assisted composition as-
suming as starting point the inclusion of one of the components
in the considered goal mashup. Our recommendation technique
was able to suggests different alternative compositions, that in
80% of the cases were very close to our goal mashups, with a
distance of maximum 2 components. In any “nal composition,
the quality was not degraded with respect to the goal mashups.

We here describe one of the performed composition exper-
iments, in which the goal was to create a mashup providing
a visual encyclopedia: the idea is to enrich the textual con-
tent extracted by an online encyclopedia or dictionary with
visual content. The benchmark mashup selected to verify the
resulting composition is Shahi4, a popular mashup which is
also one of the top-ranked mashups among those that we
have analyzed. In particular, Shahi is a visual dictionary that
combines Wiktionary content with Flickr images, and offers
search facilities by using Google Ajax Search and Yahoo
Image Search.

As described in the previous sections, the assisted com-
position procedure mainly relies on the component registry,
and on the association rule extracted from the analysis of
mashup repositories. The component registry contains all
the available components together with their descriptors in
which operational and quality features are described. The
association rules repository instead suggests valuable patterns
for combining different components• categories. Once the user
selects the “rst component to be included in the composition,
the recommendation procedure starts, and proceeds according
to two fundamental steps: i) the selection of the category
of the component to adopt in order to enrich the current

4http://blachan.com/shahi/

16

composition and ii) the selection of a speci“c component,
within the selected category, to add. In the second step, the
selection of the most suitable component is driven by the
compatibility with the components already in place and the
potential mashup quality. The two steps are repeated until the
user reaches the desired goal, or the algorithm does not “nd
any other components to include in the composition.

For example, in order to build the visual encyclopedia
mashup, we consider Wikipedia as the “rst component; apply-
ing iteratively the procedure for the assisted composition we
obtain the results summarized in Table I. Here, the second col-
umn refers to the categories to which the components already
involved in the mashup belong. The third column speci“es the
association rule that drives the selection of the category of the
new component that can extend the composition. When more
rules are identi“ed, support and con“dence are considered to
identify a single rule. In case of more rules with the same value
for such parameters, the different possible expansions of the
mashups are ranked based on the quality and added value of
the components falling in the involved categories. Finally, the
fourth column contains the name of the component selected
because it results to be the top-ranked, based on the assessment
of quality measures.

After the third steps, the recommendation procedure did
not “nd any other association rules to apply for expanding
the current composition. Comparing the obtained mashup with
our benchmark, Shahi, we noticed that both mashups address
the same situational need, but our quality-aware assisted
composition also suggested to extend the composition with a
•socialŽ component (i.e., the Twitter API), not included in the
original mashup. This in a sense proves that the aggregation
of different quality dimensions lead to the consideration of
different composition solutions that can improve the value of
the “nal composition.

V. A RCHITECTURE ANDIMPLEMENTATION

The techniques for quality assessment described in the
previous section have been integrated in our tool for mashup
development, PEUDOM [6], [9]. Figure 4 illustrates the main
architectural components, with particular emphasis on those
in charge of executing the quality-based ranking algorithms.

In the platform back-end, thecomponent registrystores
the component wrappers that enable the platform to invoke
the services the components relate to. The registry also in-
cludes component descriptorsspecifying teh functional and
quality properties of the component that are exploited by the
recommendation algorithms. In particular, every time a new
component is added in the component registryC:

• The functional properties augmented with semantic an-
notations are exploited to compute theCompatibility
and Similarity matrices. More speci“cally, the type
and similarity attributes in the descriptors are re-
spectively exploited to assess the compatibility and the
similarity among all the components in the repository. A

semantic reasoner is used for this purpose5. The two
XML-based matrices are computed at the “rst use of the
platform, and updated every time a new component is
added into or dropped from the component registryC.

• The quality annotations speci“ed in its descriptor are used
to compute thequality vector. A quality vector stores
the quality measures achieved by computing metrics,
such as those de“ned in our quality model for mashup
components [4], starting from the quality annotations.

The association rules re”ecting community-based composi-
tion practices are also computed off-line periodically, starting
from the data crawled from mashup repositoris, publicly
available (such as programmableWeb.com) or local to the
adopted mashup platform.

Based on the data described above, the recommendations
algorithms are executed every time a component is added
into the composition. Theevent handlermodule intercepts the
component addition in the front-end visual environment, and
triggers corresponding actions toi) update the composition
model, and toii) activate thecomponent recommender. The
component recommender generates the component ranking.
It analyzes the association rules, to discover the component
categories to recommend for mashup completion, and iden-
ti“es the components in those categories that are compatible
and similar with the components already in the composition.
It then exploits aquality broker to compute the aggregated
quality and the added value indexes, based on the analysis of
the quality vectors and of the composition model. The result is
a ranking of components, based on the quality and the added-
value increment that components can give to the composition
under constructions.

All the modules related to the generation of recommenda-
tions run on the server. In particular, the component recom-
mender is implemented as a REST service. The event handler
is instead a client-side AJAX-based module, which sends re-
quests to the component recommender service. The component
ranking, represented in JSON, is then sent back to the client
AJAX front-end that “nally manages the visualization of the
recommendations window.

VI. RELATED WORKS

Several works have proposed quality models for Web ap-
plications (see, among others, [15], [16], [17], [18]). Few pro-
posals also concentrate on modern Web 2.0 applications. For
example, in [19] the authors extend the ISO 9126-1 standard,
and discuss the internal quality, external quality, and quality
in use of Web 2.0 applications. Our model for component
quality [4] is also derived from the quality attributes de“ned
by the ISO standard. We however add a speci“c perspective
that concentrates on the external quality of components, i.e.,
on the set of properties that affect the component•s quality
as perceived by the mashup composer. Other works focused
on API quality in the more general SOA (Service-Oriented

5Our current implementation uses the Pellet reasoner (http://clarkparsia.
com/pellet/).

17

the users to introduce new value. The perceived quality can
then help composing applications along directions that are
•generallyŽ considered useful by other users too.

Our current work is devoted to validate our quality-aware
composition paradigm through experiments with users. In a
context of a previous study focusing on the usability of our
mashup tool [6], we collected some data about the satisfaction
of the users with a preliminary version of our quality-aware
recommendation mechanism. The users showed a good level
of satisfaction and found the mechanism useful to help them
select components to complete the mashup. We are planning
more formal validation experiments, also focusing on our
last extensions towards the added value and the perceived
quality. We will also compare our quality-based approach
with other recommendation mechanisms. In this respect, we
already investigated the potential of generic, quality-agnostic
recommender systems [28]. We will therefore observe the
users when exposed to the two kinds of approaches, quality-
aware vs. quality-agnostic, and compare their performance to
assess the effect of taking into account quality.

ACKNOWLEDGMENT

The authors would like to thank all the students that took
part to the implementation of the quality-based recommenda-
tion framework for mashup composition. This research work
is supported by the Search Computing ERC IDEAS project
(SeCo), the MULTIPLE project (TIN2009-13838) and the
FPU program (AP2007-03731).

REFERENCES

[1] T. Nestler, •Towards a mashup-driven end-user programming of soa-
based applications,Ž iniiWAS, G. Kotsis, D. Taniar, E. Pardede, and
I. K. Ibrahim, Eds. ACM, 2008, pp. 551…554.

[2] S. Dustdar, R. Pichler, V. Savenkov, and H.-L. Truong, •Quality-aware
Service-Oriented Data Integration: Requirements, State of the Art and
Open Challenges,ŽSIGMOD Record, vol. 41, no. 1, pp. 11…19, 2012.

[3] C. Cappiello, F. Daniel, A. Koschmider, M. Matera, and M. Picozzi, •A
Quality Model for Mashups,Ž inICWE, ser. LNCS, vol. 6757, 2011, pp.
137…151.

[4] C. Cappiello, F. Daniel, and M. Matera, •A quality model for mashup
components,Ž inICWE, ser. LNCS, vol. 5648, 2009, pp. 236…250.

[5] C. Cappiello, F. Daniel, M. Matera, and C. Pautasso, •Information
quality in mashups,ŽIEEE Internet Computing, vol. 14, no. 4, pp. 14…22,
2010.

[6] C. Cappiello, F. Daniel, M. Matera, M. Picozzi, and M. Weiss, •Enabling
End User Development through Mashups: Requirements, Abstractions
and Innovation Toolkits,Ž inIS-EUD, ser. LNCS, vol. 6654, 2011, pp.
9…24.

[7] F. Daniel, M. Matera, and M. Weiss, •Next in mashup development:
User-created apps on the web,ŽIT Professional, vol. 13, no. 5, pp. 22…
29, 2011.

[8] A. Namoun, T. Nestler, and A. D. Angeli, •Conceptual and usability
issues in the composable web of software services,Ž inICWE Workshops,
ser. Lecture Notes in Computer Science, vol. 6385. Springer, 2010, pp.
396…407.

[9] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and
C. Francalanci, •Dashmash: A mashup environment for end user devel-
opment,Ž inICWE, ser. LNCS, vol. 6757, 2011, pp. 152…166.

[10] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
•A framework for rapid integration of presentation components,Ž in
Proc. of WWW. ACM, 2007, pp. 923…932.

[11] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan, •Hosted universal
composition: Models, languages and infrastructure in mashart,Ž inER,
ser. Lecture Notes in Computer Science, A. H. F. Laender, S. Castano,
U. Dayal, F. Casati, and J. P. M. de Oliveira, Eds., vol. 5829. Springer,
2009, pp. 428…443.

[12] S. Yu and C. J. Woodard, •Innovation in the programmable web: Char-
acterizing the mashup ecosystem,Ž inICSOC Workshops, ser. LNCS,
vol. 5472, 2008, pp. 136…147.

[13] L. C. Freeman, •A set of measures of centrality based on betweenness,Ž
Sociometry, vol. 40, pp. 35…41, 1977.

[14] U. Brandes, •On variants of Shortest-Path Betweenness Centrality and
their Generic Computation,ŽSocial Networks, vol. 30, no. 2, p. 136145,
2008.

[15] C. Calero, J. Ruiz, and M. Piattini, •A Web Metrics Survey Using
WQM.Ž in ICWE, ser. LNCS, vol. 3140, 2004, pp. 147…160.

[16] L. Olsina, P. Lew, A. Dieser, and B. Rivera, •Using Web Quality Models
and a Strategy for Purpose-Oriented Evaluations,ŽJ. Web Eng., vol. 10,
no. 4, pp. 316…352, 2011.

[17] M. Matera, F. Rizzo, and G. T. Carughi, •Web Usability: Principles
and Evaluation Methods.Ž inWeb Engineering. Springer, 2005, pp.
109…142.

[18] A. Fernandez, S. Abrah�ao, and E. Insfran, •A Web Usability Evaluation
Process for Model-Driven Web Development,Ž inProc. of CAISE 2011,
ser. LNCS, vol. 6741, 2011, pp. 108…122.

[19] P. Lew and L. Olsina, •Instantiating Web Quality Models in a Purposeful
Way,Ž inProc. of ICWE 2011, ser. LNCS, vol. 6757, 2011, pp. 214…227.

[20] A. J. Ko, B. A. Myers, and H. H. Aung, •Six learning barriers in end-user
programming systems,Ž inProc of VL/HCC. IEEE Computer Society,
2004, pp. 199…206.

[21] B. Ellis, J. Stylos, and B. Myers, •The factory pattern in api design:
A usability evaluation,Ž inProc. of ICSE 2007. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 302…312. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.85

[22] S. Y. Jeong, Y. Xie, J. Beaton, B. A. Myers, J. Stylos, R. Ehret,
J. Karstens, A. Efeoglu, and D. K. Busse, •Improving documentation
for esoa apis through user studies,Ž inIS-EUD, ser. LNCS, vol. 5435,
2009, pp. 86…105.

[23] D. Barbagallo, C. Cappiello, C. Francalanci, M. Matera, and M. Picozzi,
•Informing Observers: Quality-driven Filtering and Composition of Web
2.0 Sources,Ž inProc. of BEWEB. ACM, 2012, p. In print.

[24] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl, •Qos aggregation in
web service compositions,Ž inProc. of EEE 2005. IEEE Computer
Society, 2005, pp. 181…185.

[25] Q. A. Liang, X. Wu, and H. C. Lau, •Optimizing Service Systems Based
on Application-Level QoS,ŽIEEE T. Services Computing, vol. 2, no. 2,
pp. 108…121, 2009.

[26] H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin, •Mashup advisor:
A recommendation tool for mashup development,Ž inICWS. IEEE
Computer Society, 2008, pp. 337…344.

[27] S. R. Chowdhury, F. Daniel, and F. Casati, •Ef“cient, interactive recom-
mendation of mashup composition knowledge,Ž inICSOC, ser. Lecture
Notes in Computer Science, G. Kappel, Z. Maamar, and H. R. M.
Nezhad, Eds., vol. 7084. Springer, 2011, pp. 374…388.

[28] P. Cremonesi, M. Picozzi, and M. Matera, •A Comparison of Recom-
mender Systems for Mashup Composition,Ž inProc. of RSSE 2012.
IEEE Press, 2012, p. In print.

